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Abstract

This paper studies asset price bubbles in a continuous time model using the local martin-
gale framework. Providing careful definitions of the asset’s market and fundamental price, we
characterize all possible price bubbles in an incomplete market satisfying the "no free lunch
with vanishing risk” and "no dominance” assumptions. We propose a new theory for bubble
birth which involves a nontrivial modification of the classical framework. We show that the
two leading models for bubbles as either charges or as strict local martingales, respectively, are
equivalent. Finally, we investigate the pricing of derivative securities in the presence of asset
price bubbles, and we show that: (i) European put options can have no bubbles, (ii) European
call options and discounted forward prices can have bubbles, but the magnitude of their bub-
bles must equal the magnitude of the asset’s price bubble, (iii) with no dividends, American
call prices must always equal an otherwise identical European call’s price, regardless of bub-
bles, (iv) European put-call parity in market prices must always hold, regardless of bubbles,
and (v) futures price bubbles can exist and they are independent of bubbles in the underlying
asset's price. These results imply that in a market satisfying NFLVR and no dominance, in the
presence of an asset price bubble, risk neutral valuation can not be used to match call option
prices. We propose, but do not implement, some new tests for the existence of asset price
bubbles using derivative securities.
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1 Introduction

Asset price bubbles have fascinated economists for centuries, one of the earliest recorded price
bubbles being the Dutch tulipmaniain 1634-37 (Garber [28], [29]), followed by the Mississippi
bubble in 1719-20 (Garber [29]), the related South Sea bubble of 1720 ((Garber [29], Temin
and Voth [61]), up to the 1929 U.S. stock price crash (White [67], DeLong and Shleifer [17],
Rappoport and White [54], Donaldson and Kamstra [21]) and the more recent NASDAQ price
bubble of 1998-2000 (Ofek and Richardson [50], Brunnermeier and Nagel [6], Cunado, Gil-
Alana and Perez de Gracia [12], Pastor and Veronesi [51], Battalio and Schultz [5]). Motivated
by these episodes of sharp price increases followed by price collapses, economists have studied
guestions related to the existence of price bubbles, both theoretically and empirically.

Sufficient conditions for the existence and non-existence of price bubbles in economic
equilibrium has been extensively investigated. Bubbles can not exist in finite horizon ratio-
nal expectation models (Tirole [62], Santos and Woodford [55]). They can arise, however,
in markets where traders behave myopically (Tirole [62]), where there are irrational traders
(DeLong, Shleifer, Summers, Waldmann [16]), in infinite horizon growing economies with
rational traders (see Tirole [63], O’Connell and Zeldes [49], Weil [64]), economies where ra-
tional traders have differential beliefs and when arbitrageurs cannot synchronize trades (Abreu
and Brunnermeier [1]) or when there are short sale/borrowing constraints (Scheinkman and
Xiong [56], Santos and Woodford [55]). For good reviews see Camerer [7] and Scheinkman
and Xiong [57]. In these models, albeit for different reasons, arbitrageurs cannot profit from
and thereby eliminate price bubbles (via their trades). Equilibriums with bubbles share many
of the characteristics of sunspot equilibrium where extrinsic uncertainty can affect the allo-
cation of resources solely because of traders self-confirming beliefs (see Cass and Shell [9],
Balasko, Cass and Shell [3]). Indeed, in bubble economies, the self-confirming beliefs often
correspond to the expectation that one can resell the asset to another trader at a higher price
(see Harrison and Kreps [33], Scheinkman and Xiong [57]).

Equilibrium models impose substantial structure on the economy, in particular, investor
optimality and a market clearing mechanism equating aggregate supply to aggregate demand.
Price bubbles have also been studied in less restrictive settings, using the insights and tools of
mathematical finance. These papers are mainly concerned with the characterization of bubbles
and the pricing of derivative securities (see Loewenstein and Willard [44], [45], Cox and Hob-
son [11], Heston, Loewenstein and Willard [35]). Recently, Jarrow, Protter and Shimbo [40]
have extended and refined these insights for complete market economies with infinite trading
horizons.

The current paper extends the analysis in Jarrow, Protter and Shimbo [40] to incomplete
markets where all traders act as price takers, i.e. a competitive market. Models where bubbles
can arise due to non-competitive trader behavior are not explored herein (see Jarrow [39] and
Bank and Baum [4] for this class of models). Given in this paper is a stochastic price process
S = (S¢)i>0 With S > 0 and a risk free money market account= (r;);>0, both defined on
afiltered complete probability spa¢®, F, F, P) whereF = (F;);>0. The First Fundamental
Theorem of asset pricing states, heuristically, that there are no arbitrage opportunities in such
a model if and only if there exists another probability meagprequivalent toP, such that
under( the process is a martingale. This dates back to the fundamental work of Harrison
and Kreps [34].



Harrison and Kreps assumed quite strong hypotheses, and under these restrictive hypothe-
ses,S was always a nice (uniformly integrabléf martingale unde€). Modern models are
less simple, and the Delbaen - Schachermayer [13] theory states that there is no arbitrage in the
technical sense of NFLVR, if and only @ rendersS into ac martingale. However sincg is
assumed to be nonnegative, it is bounded below (by zero), and argrtingale bounded be-
low is alocal martingale So we do not need to consider the more general casenafrtingales
here. Indeed, undep the price process could be a uniformly integrable martingale, just a
martingale, or even a strict local martingale. Which form the price process takes is related to
whether or not price bubbles exist.

To develop the concept of a bubble, we need to define the asstiamental priceThis
is equivalent to the arbitrage free price in the Harrison and Kreps framework. As the subject
has evolved, fundamental prices and market prices have often been confused. We define each
of these prices carefully, rigorously clarifying the distinction. We re-introduce the notion of
no dominancevhich dates back to Merton’s classic paper [48], but which has largely been
forgotten in the mathematical finance literature. Merton’s original definition was not stated in
mathematical terms. We do that here, and then use no dominance to show that bubbles can
arise only in incomplete markets. (We note in passing that much of the literature concerns
the study of bubbles in complete markets (see Loewenstein and Willard [44], [45], Cox and
Hobson [11], and Heston, Loewenstein and Willard [35]), and therefore is, in some cases,
studying an object which does not exist.).

As shown by Jarrow, Protter and Shimbo [40] in the continuous time setting, but otherwise
well-known in the discrete time economics literature (see Diba and Grossman [19], Weil [64]),

a problem with the current theory of bubbles is that bubbles can end, or “burst,” but that they
cannot be "born” after the model starts. That is, they must exist at the start of the model, at
time 0, or not at all. Of course, this property contradicts economic intuition and historical
experience. We solve this problem in a novel way.

First, we show this property is a consequence of there being a unique local martingale
measure, or by the Second Fundamental Theorem of asset pricing, a complete market. In an
incomplete market, where there are an infinite number of local martingale measures, using
the ideas of Jacod and Protter ([37]; see also Schweizer and Wissel [58]), di timdet
the market “choose” a risk neutral meas@e which rendersS into a uniformly integrable
martingale. This is equivalent to there being no bubbles at tim&hen, at some future
random timety, the market changes its choice and “chooses” a different megguwehich
rendersS into a strict local martingaleand a bubble is born This shock could be due to
intrinsic uncertainty ([27]) or extrinsic uncertainty ([9]) - a sunspot. This shiftin measures can
be thought of as roughly analogous to a phase change in an Ising model, or in a more economic
tradition, a structural shift in the economy. This modification requires a non-trivial extension
to the standard arbitrage-free pricing theory, which always assumes a fixed local martingale
measure for all times.

Our extension also generates an unexpected insight. Traditionally, the study of bubbles
has been viewed from two apparently different perspectives, one we cédictlanartingale
approach which we discussed above, and the other based on finitely additive linear operators
(or “charges”), as typified in Gilles [30], Gilles and Leroy [31], Jarrow and Madan [41]. We
show these two approaches are, in fact, the same in Theorem 8.1 below.

In the popular press, bubbles are conjectured to exist sector wide. Recent examples might



include the NASDAQ price bubble of 1998 - 2000, or the “housing bubble” either here (Case
and Shiller [8]) or earlier in Japan (Stone and Ziemba [60]). We show how the theory of
bubbles for individual assets is easily extended to bubbles in market indexes and/or market
portfolios.

Given the existence of bubbles in asset prices, an interesting set of questions arises as to
how this existence impacts the pricing of derivative securities - calls, puts, forwards, futures;
whether bubbles can independently exist in the derivative securities themselves; and whether
bubbles can, in fact, invalidate the well-known put-call parity relation. Partial answers to
these questions were obtained in complete market models using only the NFLVR assumption
(see Cox and Hobson [11]). As discussed previously, adding the no dominance assumption
to NFLVR, Jarrow, Protter and Shimbo [40] show that bubbles can arise only in incomplete
markets. Hence, the previous answers to these questions were not really useful in this regard,
and therefore they remain largely unanswered. We answer these questions herein.

First, we extend the definition of an asset’s fundamental price to the fundamental price for
a derivative security. This involves one subtlety in that the derivative security’s payoffs are
written on the market price, and not the fundamental price, of the underlying asset. Given the
proper definition, and under both the NFLVR and no dominance assumptions, we show that
European put options can have no bubbles, but that European call options can. In fact, the
magnitude of the bubble in a European call option’s price must equal the magnitude of the
bubble in the underlying asset’s price. In addition, using Merton’s [48] original argument, but
in our context, we show that European put-call parity always holds for both the fundamental
and market prices of the relevant derivative securities, independent of the existence of bubbles
in the underlying asset’s price. Bubbles in the underlying stock price imply that there exists no
local martingale measure such that the expected discounted value of the call option’s payoffs
equals the market price. And, the market satisfies NFLVR and no dominance. Thus, risk
neutral valuation cannot be used to match call option prices in the presence of an asset pricing
bubble.

Next, we study American call option pricing under the standard no dividend assumption,
and we show that the market price of a European call option must equal the market price of the
American call option, even in the presence of asset price bubbles, extending a previous theorem
of Merton’s [48] in this regard. In fact, even more is true. Relative to its fundamental price,
American call options themselves can have no bubbles, unlike their European counterparts.

Finally, we study forward and futures prices. We show that the discounted forward price
of a risky asset can have a bubble, and if it exists, it must equal the magnitude of the bubble in
the asset’s price. With respect to futures, in the existing finance literature, the characterization
of a futures price implicitly (and sometimes explicitly) uses the existence of a given local
martingale measur€® which makes the futures price a martingale (e.g., see Duffie [22], p.
173 or Shreve [59], p. 244). Since futures prices have bounded maturities, this excludes (by
fiat), the existence of futures price bubbles. Thus, to study bubbles in futures prices, we first
need to generalize the characterization of a futures price to remove this implicit (or explicit)
restriction. Accomplishing this extension, we then show that futures prices can have bubbles,
both positive andhegative,and unlike discounted forward prices, the magnitude of a futures
price bubble need not equal the magnitude of the underlying asset price’s bubble.

Before concluding, we comment on the existing literature testing for asset price bubbles in
various markets (e.g. Evans [24], Flood and Garber [26], West [65],[66], Diba and Grossman



[20], Donaldson and Kamstra [21]). As is well known, testing for price bubbles in the asset
prices themselves involves the specification of the local martingale me@susad hence
represents a joint hypothesis. We add no new insights in this regard. However, given our
increased understanding of the pricing of derivative securities with asset price bubbles, some
new tests using call and put prices are proposed. Empirical implementation of these proposed
tests await subsequent research.

An outline for this paper is as follows. Section 2 provides the model setup, while section
3 defines the fundamental price and price bubbles. Section 4 characterizes all possible asset
price bubbles. Examples are provided in section 5. Section 6 studies derivatives securities and
section 7 clarifies forward and futures price bubbles. Section 8 connects the local martingale
approach with the charge approach to price bubbles. Finally, section 9 concludes with a brief
discussion of the empirical literature with respect to price bubbles.

2 The Model

Important in studying bubbles is the precise mathematical definition of a bubble. Histori-
cally there are two approaches: one we termldical martingale approacliLoewenstein and

Willard [44], [45], Cox and Hobson [11], and Heston, Loewenstein and Willard [35]) and the
other we call thecharges approacl{Gilles [30], Gilles and Leroy [31], Jarrow and Madan

[41]). In Section 8 we show that these two approaches are the same. Therefore, without loss of
generality, we first present the local martingale approach. This section presents the necessary
model structure.

2.1 The Traded Assets

Let (Q, F,F, P) be a filtered complete probability space. We assume that the filtratien

(Ft)e>0 satisfies the “usual hypotheses.” (See Protter [53] for the definition of the usual hy-
potheses and any other undefined terms in this paper.) We assume that our economy contains
a traded risky asset and a money market account. We take the money market account as a
numéraire. In particular, the price of one unit of the money market account is the constant value
1. Changing the nugraire is standard in this literature, and after the change oéraine, the

spot interest rate is zero. Consequently, all pricescasth flowslefined below are relative to

the price of the money market account.

Let 7 be a stopping time which represents the maturity (or life) of the risky asseD ket
(D¢)o<t<- be a @dlag semimartingale process adapted tand representing the cumulative
dividend process of the risky asset. ¢t € F, be the timer terminal payoff or liquidation
value of the asset. We assume thgt D > 0. Throughout this paper, we use eithféf; );>o
or X to denote a stochastic process andto denote the value of the process sampled at time
t. We also adopt a convention that if we give a value of a process at @atte definition of a
process, we define the process by choosingaithag version unless otherwise stated. See for
example Protter [52] for a related discussion.

The market priceof the risky asset is given by the non-negatiaallag semimartingale
S = (St)o<t<-. Note that fort such thatA D, > 0, S; denotes a pricex-dividendsincesS is
cadiag.



Let W be the wealth process associated with the market price of the risky asset, i.e.

tAT
W, =S, + / dDy + X, 1< (1)
0

The market value of the wealth process is the position in the stock plus all accumulated divi-
dends, and the terminal payoff#if> 7. Since the risky asset does not exist aftewe focus
on [0, 7] by stopping every processatand thenF = F..

2.2 No Free Lunch with Vanishing Risk

Key to understanding an arbitrage opportunity is the notion of a trading strateghaditag
strategyis defined to be a pair of adapted procegses)) representing the number of units of
the risky asset and money market account held at timigh = € L(1).! The corresponding
wealth proces¥” of the trading strategyr, n) is given by

‘/tﬂ’n = TFtSt + Mt (2)

Assume temporarily that is a semimartingale. Then,slf-financing trading strategwith
Vgr = 0is a trading strategyr, n) such that the associated wealth prodésd is given by

t
v = / TudW,
0
t tAT
0 0

t tAT
= <7TtSt — / Su_d’ﬂ'u — [’ﬂ'c, Sc]t> + / WudDu + ﬂ-TXT]'{TSt}
0 0
= mSt+m 3)

where we have used integration by parts, and where

tAT t
N = / WudDu + WTXT]-{TSI‘,} — / Su_dﬂ'u — [71'07 Sc]t‘ (4)
0 0

Discarding the temporary assumption thas a semimartingale, we can definsadf-financing
trading strategy(m, n) to be a pair of processes, withpredictable and optional such that:

t
V;fmn = 7TtSt +n = / 7"'uC”/Vu = (77 : W)ta
0

wherer € L(W) for P. As noted, a self-financing trading strategy starts with zero units of
the money market accounfy = 0, and all proceeds from purchases/sales of the risky asset are
financed/invested in the money market account. Because equation (4) showisthaiguely
determined byr if a trading strategy is self-financing, without loss of generality, we represent
(m,m) by .

To avoid doubling strategies (see Harrison and Pliska [32]), we need to restrict the class of
self-financing trading strategies further.

1See Protter [53] for the definition df(17). Here we are still working under the original (objective) measare
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Definition 2.1 (Admissibility). Let V™ be a wealth process given by (3). We say that the
trading strategyr is a—admissiblef it is self-financing and/;” > —a for all ¢ > 0 almost
surely. We say a trading strategyadmissibléf it is self-financing and there exists anc R

such thatV;” > —a for all ¢t almost surely. We denote the collection of admissible strategies
by A.

The notion of admissibility corresponds to a lower bound on the wealth process, an implicit
inability to borrow if one’s collateralized debt becomes too large (e.g., see Loewenstein and
Willard [44] for a related discussion). The restriction to admissible trading strategies is the
reason bubbles can exist in our economy (see Jarrow, Protter and Shimbo [40]).

We can now introduce the meaning of an arbitrage-free market. As shown in the math-
ematical finance literature (see Delbaen and Schachermayer [13], [14] or Protter [52]), the
appropriate notion is that o Free Lunch with Vanishing RigKFLVR). Let?

K={WL = W) :7m€ A} (5)
C=(K-L{)N L (6)

Definition 2.2 (NFLVR). We say that a market satisfies NFLVR if
CnLL = {0} (7)
whereC denotes the closure 6fin the sup-norm topology ob...

Roughly, NFLVR effectively excludes all self financing trading strategies that have zero
initial investment, and that generate non-negative cash flows for sure and strictly positive cash
flows with positive probability (called, simple arbitrage opportunities), plus sequences of trad-
ing strategies that approach these simple arbitrage opportunities. We assume that our market
satisfies NFLVR.

Assumption 2.1. The market satisfies NFLVR .

Key to characterizing a market satisfying NFLVR is an equivalent local martingale mea-
sure.

Definition 2.3 (Equivalent Local Martingale Measuréd)et () be a probability measure equiv-
alent to P such that the wealth proce$g is a -local martingale. We calf) an Equivalent
Local Martingale Measure (ELMM), and we denote the set of ELMM&Ape (7).

By the First Fundamental Theorem of Asset Pricing (Delbaen and Schachermayer [14]),
this implies that the market admits an equivalernartingale measure. By Proposition 3.3
and Corollary 3.5, Ansel and Stricker [2, pp. 307, 309};martingale bounded from below is
a local martingale. (For the definition and properties ahartingales, see Protter [53], Emery
[23], Delbaen and Schachermayer [14], Jacod and Shiryaev [38, Section Ill.6€]). Thus we have
the following theorem:

Theorem 2.1 (First Fundamental TheoremfA market satisfies NFLVR if and only if there
exists an ELMM.

’L is the set of a.s. bounded random variables Bids the set of nonnegative finite-valued random variables.
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Theorem 2.1 holds even if the price process is not locally bounded due to the assumption
that 1, is non-negativé. In Jarrow, Protter and Shimbo [40] we studied the existence and
characterization of bubbles under NFLVR in complete markets. In this paper we discuss market
prices and bubbles under NFLVR in incomplete markets. Hence, by the Second Fundamental
Theorem of asset pricing (see, e.g., Protter [53]), this implies that the ELMM is not unique in
general, that ig$Moc(S)| > 2, where| - | denotes cardinality. The next section studies the
properties ofM|qc(.S) in an incomplete market.

2.3 The Set of Equivalent Local Martingale Measures

Let My (W) be the collection of equivalent measu@ssuch thatiV is a Q-uniformly in-
tegrable martingale. We call such a measure an Equivalent Uniformly Integrable Martingale
Measure (EUIMM). ThenMy, (W) is a subset oM oc(W). Let

Mnuil(W) = Mige(W)\Mui(W) 8)

be the subset aM,oc(W) such thafi?” is not a uniformly integrable martingale. In general,
both of the sets\My (W) and Myui (W) are non-empty. To see this in a particular case,
consider the following lemma.

Lemma 2.1. This example is a simplified version of the example in Delbaen and Schacher-
mayer [15]. LetB!, B? be two independent Brownian motions. Fix> 1 and letc =
inf{£(B?); = k} where£(X) is the stochastic exponential &f given as the solution of the
stochastic differential equatiody; = Y;_dX;, Y, = 1. (Here we need to assume thathas

no jumps smaller thar-1 to ensure thaiX is always positive.) Define the procesgeand M

by
Zi = E(BYino, My =E(BY)ino- )

Then,Z is a uniformly integrable martingaléy/ is a non-uniformly integrable martingale and
the productZ M is a uniformly integrable martingale.

Proof. Observe thafl/ andZ are non-negative local martingales. Sidgeand B? are inde-
pendent[B!, B?] = 0 and

M;Z; = E(B' + B? + [B', B?))ipo = E(B' + BY)ipo. (10)

In particularM Z is a local martingale.Z is a uniformly integrable martingale since it is
bounded.

E[My) :E[M01{0<oo}] + E[MOO]‘{O':OO}] = E[M01{0<oo}]

g [ / M,P(o € du)]
/E (o € du)

=P(0 < 0),

(11)

3In Delbaen and Schachermayer [14], the driving semimartingale (price process) takes VAluard is not
locally bounded from below.



where the second line of the equations above follows beecaasd M are independent. More-
over since the stopping timeis the hitting time oft, we have

0<&EMB) <k
which implies thatE'[€(B),] = 1 (since£(B?) is bounded). However
1=FE[(B)s] =0P(c = o0) + kP(0 < ),

which implies thatP(c < co) = £, and finally E[M.] = P(c < c0) = 1. It follows that M
is not a uniformly integrable martingale, sinté& = 1 # % Similarly we can show that

1_
- =

and it follows thatM Z is a uniformly integrable martingale. O

E[MoZso) = ElMxZool{gcocy] = KE[Msligco0y] = K 1 (12)

Corollary 2.1. There exists a NFLVR economy such that bty (W) and Myy (W) are
non-empty.

Proof. In lemma 2.1, let) be a probability measure under whi¢h', B2 are independent
Brownian motions. Sincé/ is not uniformly integrable undep, Q € Myui(M). Define a
new measuré? on F, by dR = Z.,dQ. Then by constructiol® € My, (M ). O

2.4 No Dominance

As shown in Jarrow, Protter and Shimbo [40], NFLVR is not sufficient in a complete market to

exclude bubbles. Also needed is the additional hypothesise dbminancéoriginally used by

Merton [48]). This section introduces the necessary structure for the notion of no dominance.
For each admissible trading strategy A, its wealth proces¥’ is given by

t
V= / TudW, (13)
0

where V™ is ao-martingale bounded from below. Therefore, it is a local martingale under
eachQ € M,.(W).

For the remainder of the paper, lerepresent some fixed and constant (future) time. Let
¢ = (A,Z") denote a payoff of an asset (or admissible trading strategy) wherex €
(At)o<t<y is an arbitrary adlag non-negative and non-decreasing semimartingale adapted to
F which represents the asset’'s cumulative dividend process, aff (@).F,, is a non-negative
random variable which represents the asset’s terminal payoff attime

Finally, let® be the collection of all payoffs available in this form. Unfortunately, this set
d, of asset payoffs is too large and lacks certain desirable properties. We, therefore, need to
restrict our attention to the subskewof ¢, defined by

Definition 2.4 (Set of Super-replicated Cash Flows)

Let® :={¢p € &g:Im € A,a € Ry suchthath, + =" < a+ V] }. (14)



The setd represents those asset cash flows that can be super-replicated by trading in the
risky asset and money market account. As seen below, it is the relevant set of cash flows for
our no dominance assumption. We first show that this subset of asset cash flows is a convex
cone.

Lemma 2.2. ® is closed under addition and multiplication by positive scalars, i.e. itis a
convex cone.

Proof. Fix ¢!, ¢2 € ® and letp = ¢ + ¢2? whereg! = (A%, Z-+") with maturity . Without
loss of generality, we can takeé < v2. There existsr!, 72 such that

. . t .
AVIES EZ’Vll{ViSt} <a —1—/0 T, AW, 1=1,2 (15)

LetA, = A} + A7 +EW' 1,1, v = 1%, and=¥ = Z2¥". The proof for multiplication is
trivial.

t t
Ar+E ey < (0l +a7) + / (my + m)dWy = a+ / TudWe, (16)
0 0

wherea = a' + a?, 7 = 7! + 72, O
If ¢ € ® then for each) € M;,.(W),
Eq [Ay + Ey] <a+ Eg [Vl,ﬂ-] <a. a7

The first inequality follows becausgé™ is a wealth process of admissible trading strategies.
The second inequality follows becauBg is a non-negative (because baly and=" are
nonnegative)p-local martingale bounded below, and henc&-&upermartingale such that
V& = 0. Therefore, each assgte @ is integrable under any ELMM. This is the reason for
restricting our attention to the set of cash flolwg™ @y

This set® is large enough to contain many of the assets of interest in derivatives pricing.
For example:

Example 2.1(Call Option) Consider a call option o maturing at timel” with strike price
K. Assume that the stock does not pay dividends. Then, we can make the identification:
W=SA=0,v=Tand=" = (Syr — K)*.
Itis easily seen that this claim is super-replicated by the trading strategy(1,<7}):>0
with a = Sy. Therefore, the payoff to this call option isdn

To motivate the definition of no dominance, suppose that there are two different ways of
obtaining a cash flowp € ®. Assume that we can either buy an as&etvhich produces
the cash flowp, or that we can create an admissible trading strategy, a poroltbat also
produces the cash flog. Further, suppose that the priceffis higher than the construction
cost ofB. In this illustration, portfolioB dominates assét, because it has the same cash flows
but a lower price.

At first glance, this situation would seem to generate a simple arbitrage trading strategy
(i.e. violate NFLVR). Indeed, one would like to short asBeind long the trading strated/
However, for many market economies, this combined trading strategy would not be admissible
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because of the short position in aséeHence, not all such "mispricings” are excluded by the
NFLVR assumption (for an example, see Jarrow, Protter and Shimbo [40]). To exclude such
"mispricings,” we need an additional assumption.

We note that if traders prefer more wealth to less, then no rational agent would ev&r buy
to hold in their optimal portfolio. If a trader wanted the cash fiowthen they would hold the
trading strategy instead This implies that a necessary condition for an economic equilibrium
is that the price ofA and the construction cost @& must coincide. Consequently, we would
not expect to see any dominated assets or portfolios in a well-functioning market.

To formalize this idea, let us denote thearket priceof ¢ at timet by A.(¢). Fix ¢ =
(A,2") € ®. For a pair of stopping times < p < v, define the net gaid/, ,(¢), by
purchasingr and selling ajx < v, by

w
Gop@) = 8,(0) + [ dB+ "Ly — As(0) (18)
Definition 2.5 (Dominance) Let ¢', * € ® be two assets. If there exists a stopping time
o < v such that:

Gou(0?) > Gou(dY), Vu>o

almost surely, and if there exists a stopping time p < v such thatE[l{Ggﬁ(;}] M}|]-'g] >0
almost surely, then we say that asset 1 is dominated by asset 2 at.time

Finally, we impose the following assumption.

Assumption 2.2(No Dominance) Let the market price be represented by a functign & —
R such that there are no dominated assets in the market.

This is Merton’s [48] no dominance assumption in modern mathematical terms. Note that
this assumption consists of two parts. One, the fact that the market price is a function, implies
that for each asset cash flow there is a uniqgue market price. And, two, it implies that the market
price must satisfy no dominance. In essence, it codifies the intuitively obvious idea that, all
things being equal, financial agents prefer more to less. Note that this also excludes suicide
strategies (see Harrison and Pliska [32] for a definition and related discussion). Different from
assumption 2.1, it does not require an admissible trading strategy to exploit any deviations.
It is in fact true that the no dominance assumption is stronger than NFLVR, as the following
lemma asserts.

Lemma 2.3. No Dominance implies NFLVR; however the converse is false.

For an example which is consistent with NFLVR, but excluded by No Dominance, as well
as a proof of Lemma 2.3, see Jarrow, Protter and Shimbo [40].

3 The Fundamental Price and Bubbles

In the classical theory of mathematical finance, for a prithagset trading in an arbitrage-
free market, there is no difference between the market price, the abitrage-free price, and the

4By primary we mean not a derivative security on the asset.
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fundamental price, even if the market is incomplete (see Harrison and Kreps [34], Harrison and
Pliska [32]). This is true because the classical theory only considers finite horizon models with
value processes that, under no-arbitrage (amartingales for all EMM'S). So, the traded
asset’s market price equals its arbitrage-free price which equals the conditional expectation of
the asset’s payoffs under afy Here (and to be made subsequently precise), the conditional
expectation of the stock’s payoffs is interpreted as the present value of the asset’s future cash
flows, called itsfundamental value Intuitively, defining abubbleas the difference between

the asset’s market and fundamental prices, we see that (by fiat) classical mathematical finance
theory has no price bubbles!

In contrast, in the modern theory of mathematical finance (post Delbaen and Schacher-
mayer [13], [14]), bubbles can exist. This is the local martingale approach for bubbles due to
Loewenstein and Willard [44], [45] and Cox and Hobson [11]. For a primary asset trading in
a NFLVR market, although there is still no difference between the market and arbitrage-free
prices, these need not be equal to the conditional expectation of the asset’s payoffs - the fun-
damental price. Indeed, if for a givep € M,,.(W) the asset’s price is a stri¢} - local
martingale, then a bubble exists. As is well known from the empirical literature (Diba and
Grossman [19], Weil [64]) and as shown below, bubbles must be non-negative and they either
exist at the start of the model, or they do not exist at all. This is an unsatisfactory implication
of the existing model structure.

In addition, as shown by Jarrow, Protter and Shimbo [40], adding the assumption of no
dominance in a complete market precludes the existence of bubbles. Therefore, to study bub-
bles using the local martingale approach, one must really investigate an incomplete market.
Using the same model structure, in conjunction with an arbitrary rule to choose a unique
Q € M,,.(W) making the asset’s price a stri¢ - local martingale, generates a market
with bubbles. But, unfortunately, this straightforward extension still retains the implication
that bubbles cannot arise after the model starts. To obtain a theory that incorporates bubble
"birth” in an incomplete market, we need to extend the standard local martingale approach as
presented in section 2. This is the purpose of the next section.

3.1 The Extended Economy

This section extends the economy of section 2 to allow for the possibility of bubble "birth” after
the model starts. For pedagogical reasons we choose the simplest and most intuitive structure
consistent with this extension. As indicated below, our extension could be easily generalized,
but at a significant cost in terms of its mathematical complexity. We leave this generalization
to future research.

To begin this extension, we lét;);>( denote an increasing sequence of random times with
oo = 0. And, we let(Y?);>( be a sequence of random variables such tHa};~o and(o);>o
are independent each other. Moreover, we further assume thafoth, and(o);>¢ are also
independent of the underlying filtratidhto which the price processis adapted. The random
times(o;)i>0 should be interpreted as representing the times of structural/regime shifts in the
economy, andY*);>( should be interpreted as the relevant variable(s) characterizing the state
of the economy (e.g. unemployment, inflation, technological advances, etc.) at those times.
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Define the two stochastic process$és):>o and(Y:):>o by

Ne=Y 1oy and Yi=> Yoo,y (19)
i>0 i>0

LetH be a natural filtration generated ByandY and define the enlarged filtratidh= F Vv H
(see Protter [53] for a discussion of some of the general theory of filtration enlargement). By
the definition ofG, (;);>¢ is an increasing sequence®fstopping times.

SinceN andY are independent d, every(Q, F)-local martingale is also &, G)-local
martingale. By this independence, changing the distributiofv aind/orY does not affect
the martingale property of the wealth procé®s Therefore, the set of ELMMs defined on
G is a priori larger than the set of ELMMs defined df,. We are not concerned with this
enlarged set of ELMMSs. We will, instead, focus our attention on the later and sometimes write
M%;C(W) to explicitly recognize this restriction. With respect to this restricted set, given the
Radon Nikodym derivativeZ,, = %y;@, we define its density process By = F[Z.|F].
Of course,Z is anF-adapted process. Note that this construction implies that the distribution
of Y and N is invariant with respect to a change of ELMMs} (W).

The independence of the filtratidi from [F gives this increased randomness in our econ-
omy the interpretation of beirgxtrinsic uncertaintylt is well known that extrinsic uncertainty
can affect economic equilibrium as in the sunspot equilibrium of Cass and Shell [9]. This form
of our information enlargement, however, is not essential to our arguments. It could be relaxed,
making bothN andY pairwise dependent, and dependent on the original filtrétias well.
This generalization would allow bubble birth to dependmininsic uncertainty(see Froot and
Obstfeld [27] for a related discussion of intrinsic uncertainty). However, this generalization
requires a significant extension in the mathematical complexity of the notation and proofs, so
it is not emphasized in the text.

3.2 The Fundamental Price

This section makes precise our definition of the fundamental price. The fundamental price
in our extended economy depends on the state of the economy ataisnepresented by the
original filtration (F;)+>0, the state variable(3);, and the number of regime shiftg that have
occurred. Suppos®; = i. LetQ’ € M,.(W) be the ELMM "selected by the market” at time
t givenY. Of course, in an incomplete market, the set of ELMM&,.(W) is infinite. To
uniquely choose the ELLM)?, i.e. to fix the@® "selected by the market,” we use the insights
of Schweizer and Wissel [58] and Jacod and Protter [37] who show that if enough derivative
securities trade (of a certain type), then the market's choiagg@’afan in theory be uniquely
determined. These traded derivative securities effectively complete the market, enabling the
unique determination of)’. We assume the Jacod and Protter [37] conditions hold for the
remainder of the paper.

As in the earlier literature on bubbles, the fundamental price of an asset (or portfolio)
should represent the present value of its future cash flows. Our definition captures this idea.

Definition 3.1 (Fundamental Price)l et¢ € ® be an asset with maturityand payofi A, =¥).
We define théundamental pricé\; (¢) of assetp by

A(¢) =) Eg [/t dAy + Eyl{u<oo}‘ ft} Liscuynficlosnoir)} (20)
i=0
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vt € [0, 00) whereA’ (¢) = 0.

In particular the fundamental price of the risky asSgis given by

Sf = ZEQi [/t D, +XT1{T<oo}‘ft] liierinftelos,oi))- (21)
=0

To understand this definition, let us focus on the risky asset’s fundamental price. At any time
t < 7, giventhat we are inthe sét; <t < 0,41}, the right side of expression (21 ) simplifies
to:

Sy = EQi |:/t dDu+XTl{T<oo}‘ft] .

Given the market’s choice of the ELMM 9" € M,.(W) at timet, we see that the fun-
damental price equals the present value of its future cash flows. Note that the payoff of the
asset at infinity,X,1.,_,, does not contribute to the fundamental price. This reflects the
fact that agents cannot consume the pay(),f'li{fzoo}.5 Furthermore note that at time the
fundamental prices* = 0. We emphasize that a fundamental price is not necessarily the
same as the market pricg. Under NFLVR and no dominance, the market prigequals the
arbitrage-free price, but again we emphasize that these need not equal the fundamental price
Sy

We can alternatively rewrite the fundamental price in terms of an equivalent probability
measure, indexed by time Note however, that this measure will not be in the/sét,.(17).

Theorem 3.1. There exists an equivalent probability meas@é such that
A (@) = Egi- [/ dA, + 5”1{y<oo}' ft] 1 (22)
t

Proof. Let Z¢ € F,, be a Radon Nykodim derivative @’ with respect toP and Z; =
E[Z!|F;]. Define

zZb = Z Z telos0001)} (23)
=0

ThenZ™ > 0 almost surely and

EZY% =FE

Z Zzl{te[ai,awﬁ}] = Z E[le{te[gi,ai+1)}]
=0 1=0

= Z E[Zi]E[l{tG[O'i:Ui+1)}]
=0

oo

= ZP(CU <t<oit1)
i=0

=1

5This convention is nonetheless somewhat arbitrary. The alternative convention is to inGluge_ .y in the
asset’s cash flows. The consequence would be that there are no type 1 bubbles (as defined subsequently).

(24)
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Therefore we can define an equivalent measpfifeon F,, by dQ* = Z"*dP. The Radon-
Nykodim densityZ{*on G, is

. th* . i i

Zf = dP G - E[Zt | 7] = ZE[Z 1{t€[0'i-0'i+1)}‘gt]

N t i=0 (25)
= Z E[Zi‘gt]l{te[m-mﬂ)}'
=0
Then
A (9) =) Eg: [ /t dAy + Eul{u<00}‘ ft] Lit<wyniielos oisn))
=0

= ZEQi {/t dAy +Z"11,c00) gt:| Liecvyngtelosoii)} (26)

X 7 v _,
Z 72'1{756[‘770141)} </ dAy + 2 1{V<oo}> G 1{t<u}
Zt t

=0
and observing that .
g1{te[ By = o i)
i 0iy0% - i ’
Z4 i > s Z{iiclos0i01)}

we can continue:
Y20 Z e lon0i1)} (/” >
ZOO ‘ - dA“+EV1 <00 gt 1 v
(Z’LO Zgl{te[oi,ai+1)} t { < } {t< }
Zt* 1
e [(Z) ([ ane =1 ) 6] 10
Ty . { } {t<v} o)

= EQt* |:/t dAu + EV]—{V<OO}‘ gt:| 1{t<V}

=F

= EQz* |:/t dA, + Eyl{l,<oo}‘ ft:| 1{t<y}
O
Definition 3.2 (Valuation Measure, Static and Dynamic Marketsgt Q'* be an equivalent
probability measure such that for eaghe ® the fundamental price is given by

Ai(9) = Egi- [/t dA, + 5”1{V<oo}' ft] 1icy- (28)

Then,Q" is called thevaluation measurat t.
We call the collection of valuation measur&g™),~ thevaluation system
If N; =1 forall ¢, then

Q™ (A) =Q%A4) VA€ Fu,t>0. (29)
In this case, we say the valuation systematatic By construction, in a static market, such a

Q" € M,,.(W). If the market is not static, we say that itdgnamic
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The x superscript is used to emphasize tGét is the measurdetermined by the market
and the superscriptis used to indicate that it is chosen at timeOn {o; < t < 041},
the valuation measure coincides With € M..(W). As noted beforeQ™ ¢ M;,.(W) in
general unless the system is st&tiGiven the definition of an asset’s fundamental price , we
can now define the fundamental wealth process.

Definition 3.3 (Fundamental Wealth Procesd)e define the fundamental wealth process of
the risky price by

TN
W = Sf + / Dy + Xrlr<yy- (30)
0
Then,
Wi =Y Eg [/0 dDy + Xr1{7<oo}‘ ft} Litelor0141)) (31)
=0

Vt € [0,00) and Wi = [ dDy + X1 ooy
Alternatively, we can rewritél;* by

W = Z EQi (Wl Fi 1{t€[0'i70'i+1)} vt € [0, 00). (32)
=0

In general, the choice of a particular ELMM affects fundamental values. But, for a certain
class of ELMMs,whernr < oo the fundamental values are invariant. This invariant class is
characterized in the following lemma.

Lemma 3.1. Suppose < oo almost surely. On the sét; < ¢ < 0,41}, if the market chooses
Q' € My(W), then the fundamental price of the risky asSgtind fundamental wealti/;*
do not depend on the choice of the meagdtalmost surely.

Proof. Fix Q*, R* € My(W). 7 < oo implies thatW,, = Wx. Let W andW/F be
the fundamental prices ofw; < t < 0,11} whenQ! = Q* and R* respectively. SincéV is
uniformly integrable martingale undégy* and R*,

W = Eq- [Wi|Fi] = Eq- [Wel Fi]
= Wi = Ep«[Weo|F]
= Ep-[WZ|F]
=Wl as.onfo; <t <o}

(33)

The difference thQ* andStQ* does not depend on the choice of measure. Theréﬁp% =
Wi impliesStQ* =SF on{o; <t <o} O

6Although the definition of the fundamental price as given depends on the construction of the extended economy,
one could have alternatively used expression (28) as the initial definition. This alternative approach relaxes the extrinsic
uncertainty restriction explicit in our extended economy.
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This lemma applies to the risky asset only. If the measure shifts @pora M (W) to
R € My (W), then the fundamental price of other assets can in fact change.

The next lemma describes the relationship between the fundamental prices of the risky
asset when two measures are involved, one being a meRSweM yy (W).

Lemma 3.2. Suppose < co. On{o; <t < 0;.1}, consider the case whe@ ¢ M (W)
andR’ ¢ Mnyyr(W). Then,

Wi <w2*, as.on {o; <t <o} (34)

That is, the fundamental price based on a uniformly integrable martingale measure is greater
than that based on a non-uniformly integrable martingale measure.

Proof. Pick@* € My (W) andR* € Myy(W). Sincer < oo almost surelyW,, = WX .
Under R*, W is not a uniformly integrable non-negative martingale 8id> Er«[Woo|F:].
Therefore

W — W =Bg-[WL|F] — Er-[Wi|F]
=Eq-[Weo| F] — Ep- [Woo| 7]

(35)
=W, — Ep«[Weo| Fi]
>0.
O
We can now finally define what me mean by a price bubble.
3.3 Bubbles
As is standard in the literature,
Definition 3.4 (Bubble) We define the asset price bublsidéor S by
g=58-—5" (36)

Recall thatS; is the market price and; is the fundamental value of the asset. Hence, a
price bubble is defined as the difference in these quantities.

4 A Characterization of Bubbles

This section characterizes all possible price bubbles in both static and dynamic models.

4.1 Static Markets

Static markets are the first natural generalization of a complete market. In a complete market,
there is only one ELMM. In a static market, there is also only one ELMM, although it is
possible that not all derivative securities can be replicated by an admissible trading strategy.

17



The complete market case was studied in Jarrow, Protter and Shimbo [40]. Since the analysis
is very similar, the reader is referred to the original paper for the relevant proofs.

By definition, in a static market, there exist® € M;,.(W) such thaQ*!(A) = Q*(A)
for all ¢ > 0. Then, the fundamental wealth procég$ is given by

Wt* frd EQ* |:/ dDu + XT1{7'<OO}' ft:| 1{t<7’}
t
tAT
+/ dDu + XT]-{TSt}
0
= EQ* [/ dD, +XT]‘{T<OO}'ft:| ,
0

which is a@Q*-uniformly integrable martingale. Sind&is Q*-local martingale, this implies
that the price bubblg is a@Q*-local martingale.
Recall that the stopping timerepresents the maturity of our risky asset.

Theorem 4.1. If there exists a non-trivial bubblg # 0, then we have three and only three
possibilities:

(1) g is a local martingale (which could be a uniformly integrable martingaleP{fr =
00) > 0.

(2) g is a local martingale but not a uniformly integrable martingale if is unbounded, but
with P(1 < 00) = 1.

(3) [ is a strictQ-local martingal€, if 7 is a bounded stopping time.

As indicated, there are three types of bubbles that can be present in an asset’s price. Type
1 bubbles occur when the asset has an infinite life with a paydff at oo}. Type 2 bubbles
occur when the asset’s life is finite, but unbounded. Type 3 bubbles are for assets whose lives
are bounded.

The first question one considers when discussing bubbles is why arbitrage doesn’t exclude
bubbles in a NFLVR economy. To answer this question, let us consider the obvious candidate
trading strategy for an arbitrage opportunity. This trading strategy is to short the risky asset
during the bubble, and to cover the short after the bubble crashes. For type 1 and type 2 bubbles,
this trading strategy fails to be an arbitrage because all trading strategies must terminate in
finite time, and the bubble may outlast this trading strategy with positive probability. For type 3
bubbles this trading strategy fails because of the admissibility condition. Admissibility requires
the trading strategy’s wealth to exceed some fixed lower bound almost surely. Unfortunately,
with positive probability, a type 3 bubble can increase such that the short position’s losses
violate the lower bound. The admissibility condition is a type of short sale restriction, and
these are well known to generate bubbles in equilibrium models (see Scheinkman and Xiong
[56], Santos and Woodford [55]). For examples of bubbles in a NFLVR market we refer the
reader to Jarrow, Protter and Shimbo [40].

In a complete market, the addition of no dominance assumption excludes these bubbles due
to the ability of an admissible trading strategy to generdd@gposition in the asset at a lower

’A strict local martingale is a local martingale that is not a martingale.
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cost than purchasing the asset directly (due to the bubble). Note that synthetically creating a
long position in the asset does not violate the NFLVR admissibility restriction. However, a
static market need not be complete, so the theory of bubbles we discuss herein is not vacuous.

We can refine Theorem 4.1 to obtain a uniqgue decomposition of an asset price bubble that
yields some additional insights.

Theorem 4.2. S admits a unique (up to an evanescent set) decomposition
S=8*+pB=8"+ (8 + 5+ 5, (37)
wheres = (5;):>0 is a adlag local martingale and

(1) B! is a c;adlag non-negative uniformly integrable martingale with — X, almost
surely,

(2) 3? is a &dlag non-negative non-uniformly integrable martingale with — 0 almost
surely,

(3) 3% is a cadlag non-negative supermartingale (and strict local martingale) such that
EB} — 0and3} — 0 almost surely. That is3? is a potential.

Furthermore,(S* + 8! + 3?) is the greatest submartingale bounded abovéihy

As in the previous Theorem 4.8}, 52, 3 give type 1, 2 and 3 bubbles, respectively. First,
for type 1 bubbles with infinite maturity, we see that a type 1 bubble component converges to
the asset’s value at tim®, X .. This timeco value X, can be thought of as analogous to fiat
money, embedded as part of the asset’s price process. Indeed, it is a residual value to an asset
that pays zero dividends for all finite times. Second, this decomposition also shows that for
finite maturity assets; < oo, the critical threshold is that of uniform integrability. This is due
to the fact that whem < oo, the type 2 and 3 bubble componentsfot= (3;);>o converge
to 0 almost surely, while they need not convergd.ih Finally, type 3 bubbles are strict local
martingales, and not martingales.

As a direct consequence of this theorem, we obtain the following corollary.

Corollary 4.1. Any asset price bubblé has the following properties:

(1) B>0,
(2) ﬂ71{7<oo} =0,and
3) if By =0thens, = 0forall u > t.

Condition (1) states that bubbles are always non-negative, i.e. the market price can never
be less than the fundamental value. Condition (2) states that if the bubble’s maturity is finite
T < oo, then the bubble must burst on or before Finally, Condition (3) states that if the
bubble ever bursts before the asset’s maturity, then it can never start again. Alternatively stated,
Condition (3) states that in the context of our model, bubbles must either exist at the start of
the model, or they never will exist. And, if they exist and burst, then they cannot start again
(this corollary is well known in the empirical literature for discrete time economies, see e.g.
Diba and Grossman [19], Weil [64]).
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4.2 Dynamic Markets

In a dynamic market, there is no single ELMM generating fundamental values across time.
The valuation measurgg** andQ'* at timess < t are usually two different measures, and
neither is an ELMM. It follows, therefore, that the local martingale property of a bubbiea
static market is no longer preserved.

The following is a trivial but important observation generalizing Corollary 4.1 to dynamic
markets.

Theorem 4.3. Bubbles are nonnegative. That is,dfdenotes a bubble, thesy > 0 for all
t>0.

Proof. Fixt > 0. On{o; <t < 0,41}, the market choose&g’ as a valuation measure and the
fundamental price; is given by

S:]‘{O'igt<0'i+1} = EQZ |:/t dDu + XT]'{T<OO} ‘ft 1{t<7}1{0'i§t<0'i+1}

(38)
= S;ll{UiSt<Ui+1}’
whereS;* denotes a fundamental price with valuation meagdire M,,.(W) and
Sz( = Z S?i1{0i§t<0'i+1} (39)
and
ﬁ;k = Zﬁg1{0i§t<ai+l} (40)
By Corollary 4.1,3° = S — S** > 0 for eachi and hences* > 0. O

Negative bubbles do not exist even in a dynamic market.
As shown in the previous section, bubble birth is not possible in a static market. In contrast,
in a dynamic market, bubble birth is possible as the next example shows.

Example 4.1. Suppose that the measure chosen by the market shifts atgirfrom Q <

My (W) to R € Mnui(W). To avoid ambiguity, we denote a fundamental price based on
valuation measure® and R by W®* and W #*, respectively. By Lemma 3.2, we can choose
@, R ando such that the difference of fundamental prices based on these two measures,

W —wh > o, (41)
is strictly positive with positive probability. Then, the fundamental price and the bubble are
given by
Wy =W Loy + Wi 1,02 (42)
B = B 1 py<sy- (43)
And, a bubble is born at time,.

As shown in Lemma 3.1, a switch from one measiiréo another measur@’ such that
Q,Q" € My (W) does not change the value Bf*. Therefore, if a bubble does not exist
underQ, it also does not exist undéy. Bubble birth occurs only when a valuation measure
changes fronf) € My (W) toanR € Myui(W).
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5 Examples

In this section, we discuss several examples. Since Tymébles are simple and few assets
have infinite lifetimes, we focus on assets with finite (but possibly unbounded) maturities.

5.1 Assets with Bounded Payoffs

We first consider those risky assets that have bounded payoffs.

Theorem 5.1. If fOT dD, + X; is bounded, they; = S} and the asset price does not have
bubbles.

Proof. By hypothesis, there exists € R, such thathT dD, + X. < a. Then holdinga
units of the money market account dominates holding the risky asset. By No Dominance
(Assumption 2.2)

Se=MA((D, X7)) < a. (44)

Since a bounded local martingale is a uniformly integrable martingale, all ELMMs are in
My (W) and bubbles do not exist ii. O

Theorem 5.1 also holds for any arbitrary asgee & with bounded payoffs. We now
provide some useful examples of assets with bounded payoffs.

Example 5.1(Arrow-Debreu Securities)

Let v be anF-stopping time such that < 7 almost surely andd € F,. Consider an
Arrow-Debreu security payingatv for v < 7 if event A happens, denoted ly, = (0, 11”4).8
Then, the market price af 4 does not have a bubble, i.e.

At(¢A) = AI(QSA) = Z EQi[114’ft]l{t<7}1{0i§t<0i+1}‘ (45)
The market price of Arrow-Debreu securities equal the conditional valuation probability of
A € F, implied by the market.
Example 5.2(Fixed Income Securities)

Consider a default free coupon bond with coupon€¢’gfaid at timeg,....t, = v < 7
and a principal payment d? at timer,® wherer is the maturity date of the bond. Then, letting
Ay =31 Cly, <y and=” = P, we havep = (A, =) with A, + Z¥ bounded by the sum

8Recall that we are using the money market account as the numeraire. A transformed analysis applies in the original
(dollar) economy. Here, however, the payoff to the Arrow-Debreu security needs to be redefinddillbe at time
v. Letting D, denote the time market price of the money market account, the payoff to the Arrow-Debreu security
in the nunéraire is then /D, units at timev, and notl unit. This change has no affect on our analysis, because if the
spot rate of interest > 0 almost surely, withDy = 1, then1/D,, < 1 almost surely.

9As with the Arrow-Debreu securities, these payoffs are in units of the money market account and they need to be
appropriately transformed to get dollar prices in the original economy.
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of all the coupons and principal payments. Then, by Theorem 5.1, the default free bond price
has no bubbiles, i.e.

Ai(9) = Ai(9) (46)

= Y B> Clyany + Pl Filljerylioi<t<oin}-
% =1

Although this example applies to default free bonds, the same logic can be used to show
that credit risky bonds, interest rate swaps, credit default swaps, and collateralized default
obligations (CDOs) exhibit no bubbles. This is because all of these fixed income securities’
payoffs are bounded. For example, in the case of credit risky bonds, the cash flows are bounded
by the sum of the promised payments. In the case of credit default swaps and CDOs, the
maximum possible payments can be computed at origination of these contracts (see Lando
[43] for a description of these different instruments).

5.2 Black-Scholes Type Economies

It is interesting to study the standard Black-Scholes economy in both static and dynamic mar-
kets, yielding perhaps some unexpected, but new insights.

Example 5.3(Static Market, Finite Horizon)

Fix T € R, and letS; be a non-dividend paying stock following a geometric Brownian
motion, i.e.

2
St:exp{<,u—02)t+aBt} vt € [0, T, 47
whereu,o € Ry, andB is a standard Brownian motion. The#i,is a @-martingale, where
@ is the probability measure off; defined by the Radon-Nikodym derivativi€) /dP =
E(~(n/o)B)r.

This is the standard Black Scholes model, and we see by construction that there are no
stock price bubbles.

Example 5.4(Static Market, Infinite Horizon)

If we simply extend formula (47) frorfo, 7] to [0, co), then the situation changes dramat-
ically. On an infinite horizon$S; converges t® almost surely. Thus, the fundamental value of
the stock (recall that it pays no dividends o{@&ro)), is S; = 0. By definition, therefore,

ﬁt:St_S::Sta

and the entire stock price is a bubble!
In this case() is hot an EMM onF,. Indeed,P and( are singular or#¥,. Hence,S is
not a uniformly integrable martingale nor a (regular) martingale unde®tb&en above, but
only aQ strict local martingale.
Although this example is plausible under NFLVR, when we also introduce the no dom-
inance assumption 2.2, this example becomes problematic. Note that if the stock pays no
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dividends on0, oo), then no dominance implies that the asset has zero value;;i=.0. In
this case, the model trivializes and becomes useless.

Therefore, if we want to use the Black-Scholes model in a static market, we need to restrict
it to the finite horizon case. And, then one needs to interfeas either: (i) a liquidating
dividend (final cash flow), or (ii) the resale value at tiffieln either case, because the Black-
Scholes economy as given by expression (47) implies a complete market, we know that under
both NFLVR and no dominance, there cannot be bubbles.

Example 5.5(Dynamic Market, Infinite Horizon)

This example can be considered as an extension of the Black Scholes formula which is well
defined on0, co). It is also an example of a dynamic market in which bubble birth occurs.
Let B!, B? be two independer@-Brownian motions. Fix > 1. Let

o = inf{€(B?); = k}. (48)
Define the processes andsS by
Zy = S(BQ)t/\m S = 5(Bl)t/\a- (49)

We regardS as a stock process that pays no dividehds: 0, and where the stock can default
attimer = o. If it defaults, it pays a final cash flow at the default time equatto= S,,.

The key difference of this example from the standard Black-Scholes model is the explicit
introduction of a default time = o, so thatS does not converge talmost surely as — oo.
However, as in lemma 2.1

FolSec] = EQIE(B o1 (pcny] = Qo < o0) = 7, (50)

s0 S is a non-uniformly integrable martingale.

Let R € M;,.(W) be the probability measure defined & /dQ|-, = Z;. As shown in
Lemma 2.1,57 is a@-uniformly integrable martingale. It follows that is an R-uniformly
integrable martingale, since

SooZoo‘ft} _ ZtSt

E
PrlSl ] = 22522 >

=5 a.s. (51)

Observe thal is a geometric Brownian motion stopped byinder@ and R. Thus,S coin-
cides with standard Black Scholes modelon< o}.

Let us now introduce the regime shifting times and suppose that at each of these times
the market shifts from@) to R or vice-versa.Then when shifting fronR to @, a bubble is
born. This is a Black-Scholes like economy that is infinite horizon, but where the stock price
process, prior to default, exhibits bubble birth and bubble disappearance.

5.3 Market Indices

Although the previous discussion concentrates on a single risky Sssie¢ theory remains
unchanged if there are multiple risky assets &hdepresents a vector of risky asset price
processes. It also applies to market indices. Metlenote the market price of an asset defined
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as an (weighted) average of (finitely many) individual risky assets trading in the market (e.g.
Dow Jones Industrials, S&P 500 Index, etc.). Of course, the future cash flows associated with
this portfolio are also a weighted average of the cash flows from the individual assets. As
before, we can define the fundamental price of this index. If any asset in the market index has
a bubble, then the market and the fundamental prices of this index differ, and a bubble exists.

Example 5.6(Bubbles in an Index Model)

In portfolio theory, the return on an individual asgetis often modeled using an index
model:

R,=b-RM +¢, (52)

whereb is constantR} denotes the return on the index, ands a idiosyncratic return that is
independent oM.

Taking the stochastic exponential of both sides of this expression, we obtain the stock price
processS;, i.e.

Sy = E(R); = E(b- RM),E(e)s. (53)

If we assume, as is standard in the literature, that idiosyncratic risk earns no risk premium,
thene is a local martingale under both the physical and the valuation measure.

Let us consider a static market with the valuation meagyre M;,.(S). Since&(b -
RM) and £(e) are independent anfdis a constant, the stock price proceSs= £(R), is
a Q-uniformly integrable martingale if and only if botfi( M) and £(¢) are Q-uniformly
integrable martingales. This implies that under the index model bubbles can exist in a stock
because the bubble exists in a market index, or because it exists within the stock’s idiosyncratic
component itself.

6 Derivative Securities

This section considers bubbles in derivative securities written on the risky asset. We focus on
the standard derivatives: forward contracts, European and American call and put options. We
first need to formalize the definition of the fundamental price of a derivative security.

To simplify the notation, we assume that the risky asspays no dividends over the time
interval (0, T'], wherer > T almost surely. We define an arbitrary (European tyjejvative
securityon the risky asse$ to be a financial contract that has a random payoff at time
whereT is called the maturity date. The payoff is given Hy-(S) whereHr is a functional
on (S,)u<T. ASis true in practice, our definition of a derivative security reflects the fact that
the financial contract’s payoffs are written on tinarket priceof the risky asset, and not its
fundamental value. This is a small, but important observation.

We denote the time market price of a derivative securify by A/, We study derivative
pricing in a dynamic market (hence a static market is a special case). Therefore we assume
that the market chooses a collection of ELMMg');>0 € M,,.(W) such that the derivative
security’s market pricd is aQ’-local martingale over the time intervd; <t < o;,1}.

Then, analogous to the risky asset, thedamental price of the derivative securisyde-
fined to be the conditional expectation of the derivative’s tifhpayoff using the valuation
measure)™ determined byQ")i>0 € Mioe(W), i.e. Ege: [Hp(S)|F.
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The derivative security’s price bubbl& is defined as the difference between its market
price and fundamental value,

6 = Al — Eqe-[Hp(S)| 7).
The following lemma will prove useful in the subsequent analysis:

Lemma 6.1. Let Hr, H). be the payoffs of two derivative securities with the same maturity
date.
LetA¢(H') have no bubble, i.e.

A" = Egi [H(S)|F. (54)
If Hp(S) < H/.(S) almost surely, then
A" = Equ[Hp(S)|F. (55)

Proof. Since derivative securities have bounded maturities, we only need to consider type 3
bubbles. LetC be a collection of stopping times d0,7]. Then for allL € £, AL(H) <

A (H'") by No Dominance (Assumption 2.2). Sind¢H’) is a martingale o0, 77, it is a
uniformly integrable martingale and is in class (D) [0onT]. ThenA(H) is also in class (D)

and is a uniformly integrable martingale ¢ 7']. (See Jacod and Shiryaev [38, Definition
1.46, Proposition 1.47]). Therefore type 3 bubbles do not exist for this derivative security.

This lemma states that if there is a derivative security with no bubble and whose payoff
dominates another derivative security’s payoff, then the dominated derivative security’s mar-
ket price will have no bubble. This, of course, is an extension of Theorem 5.1 to derivative
securities.

6.1 European Call and Put Options

In this section we consider three standard derivative securities: a forward contract, a European
put option, and a European call option; all on the same risky asset. Each of these derivative
securities are defined by their payoffs at their maturity datefardard contracton the risky
asset with strike pric& and maturity datd” has a payoffS; — K|. We denote its timemarket
price athf (K). A European call optioron the risky asset with strike pridg€ and maturity
T has a payoffS; — K|*, with time ¢t market price denoted as;(K). Finally, aEuropean
put optionon the risky asset with strike prid€ and maturityZ’ has a payoff K — S;]*, with
time ¢ market price denoted a&(K).1° Finally, let th(K)*, Cy(K)*, and P,(K)* be the
fundamental prices of the forward contract, call option and a put option, respectively.

A straightforward implication of the definitions is the following theorem.

Theorem 6.1(Put-Call Parity for Fundamental Prices)

Ci(K) - P} (K) = V/*(K). (56)

10To be precise, we note that the strike price is quoted in units of the numeraire for all of these derivative securities.
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Proof. At maturity T,
(ST—K)"—(K-Sr)T=Sr—-K VK=>0 (57)

Since a fundamental price of a contingent claim with payoff funcfibis Eq:[H (S)7|F]
with the valuation measu@**,

C{(K) — P} (K) = Egu[(Sr — K)T|F] — Egu[(K — S1)"|F]
= Egu[St — K |7 (58)
= VI (K)

O

Note that put-call parity for the fundamental price does not require the no dominance as-
sumption 2.2. It only requires that the asset’s market price process satisfies NFLVR. Further-
more, put-call parity for the fundamental prices holds regardless of whether or not there are
are bubbles in the asset’s market price.

Perhaps surprisingly, put-call parity also holds for market prices, regardless of whether or
not the underlying asset price has a bubble.

Theorem 6.2(Put-Call Parity for Market Prices)
Ci(K) = P(K) = VI (K) = 8, - K. (59)

Proof. This is a direct consequence of no dominance (Assumption 2.2). See the proof of
Theorem 6.4. O

This theorem and proof are identical to that originally contained in Merton [48]. It de-
pends crucially on the no dominance assumption. If only NFLVR holds, then put-call parity in
market prices need not hold. For an example see Jarrow, Protter and Shimbo [40]. For related
discussions of the economy without no dominance (Assumption 2.2), see also Cox and Hobson
[11], and Heston Loewenstein and Willard [35]. Note that this theorem also values the forward
contract.

Theorem 6.3(European Put Price)or all K > 0,
Py(K) = P (K). (60)

The proof of this theorem is trivial. Note that the payoff to the put option is bounded by
K, hence by Theorem 5.1 the result follows. Hence, European put options always equal their
fundamental values, regardless of whether or not the underlying asset’s price has a bubble. We
will revisit this observation when we discuss the empirical testing of bubbles in the paper’s
conclusion.

Theorem 6.4(European Call Price)For all K > 0,
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Proof. Let V,;f*(K) denote the fundamental wealth process of the portfolio consisting of a unit
forward contract with forward pric& and maturityZ’. Then

V¥ (K) = Ege[Sr|Fi] - K < S; — K. (62)

By applying no dominance (Assumption 2.2) to a unit forward contract and portfolio with a
unit long risky asset and K money market account,
VI(K)=5,-K
= (8t = Equ[S7|F]) + (Eqe[S7|F] — K) (63)
— V;f*(K) + (St — EQt* [ST’ft])
This implies that a forward contract has a type 3 bubble of §ize= S; — Eg: [S7|F].

Take the conditional expectation with respect to the valuation me#gtiren the identity:
(ST —K)+ — (K — ST)Jr =Sr— K. Then

Ci(K) - PH(K)=V/"(K) < S - K. (64)

Applying no dominance (Assumption 2.2) to the portfolio consisting of a unit long call and a
unit short put against a unit forward contract,

Ci(K) - P(K)=V/(K)=8, - K. (65)
This is put-call parity. By subtracting (64) from (65),
[Ci(K) = G (K)] = [P(K) = P{(K)] = (S — K) = V/*(K)
:St — EQz* [ST’ft]

3
:5t7

(66)

since the put option has a bounded paybf{,K) = P;(K) andCy(K) — C}(K) =6;. O

Since call options have finite maturity, call option bubbles must be of type 3, if they exist.
The magnitude of such a bubble is independent of the strike price and it equals the magnitude
of the asset’s price bubble. We see that even if the market satisfies NFLVR and no dominance,
an asset price bubble implies that there exists no valuation me@éuseich that the expected
discounted value of the call option’s payoffs equals its market price. Risk neutral valuation is
not able to match market prices in the presence of asset price bubbles.

6.2 American Options

This section investigates the pricing of American options in a static market. Because the time
value of money plays an important role in analyzing the early exercise decision of American
options, we need to modify the notation to make explicit the &naine. In this regard, we
denote the time value of a money market account as

t
D; =exp (/0 rudu> (67)
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wherer is the non-negative adapted process representing the default free spot rate of interest.
To simplify comparison with the previous sections, we stilldetlenote the risky asset’s price
in units of the nuréraire.

Definition 6.1 (The Fundamental Price of an American Optiofifie fundamental pricg*” (H)
of an American option with payoff functidii and maturityT is given by

VA (H) = sup EglH(S,)|F] (68)
nelt,T]

wheren is a stopping time and the market selecfgd M;,.(S).

This definition is a straightforward extension of the standard formula for the valuation of
American options in the classical literature. It is also equivalent tdaingrice as defined by
Cox and Hobson [11] when the market is complete.

We apply this definition to a call option with strike pridé and maturityl'. Letting
C*(K) denote the American call's fundamental value, the definition yields

. K
Ci(K) = sup Eql(Sy — 1-)*|7. (69)
nelt,T) n

Let C4(K); be the market price of this same option, afifi (K); the market price of an
otherwise identical European call. Then, the following theorem is provable using standard
techniques.

Theorem 6.5. Assume that the jump process of the asset’s prcg, := (AS;):>0, Where
AS; = Sy — S;_, satisfies the regularity conditions of Lemma 10.1. Then, foKall

CP(K) = CA(K) = C(K). (70)
Proof. (i) By Theorem 10.1 withG(z,u) = [z — K/D,|™,

CA*(K)t = sup E[(S; — K/D,)"|F]
t<7<T

= B[(Sr — K/Dr)"|F] + (S — E[Sr|F])
= CF"(K) + 6
= C/(K)

The last equality is by Theorem 6.4.

(71)

(i) A unit of an American call option with arbitrary strik& is dominated by a unit of an
underlying asset. Therefore by No Dominance (Assumption 2.2),

CHK) < S, (72)

Lety; := CAA(K) — C/*(K) be a bubble of an American call option with strik& Since
American options have finite maturity; is of type 3 and is a strict local martingale. Then by
(i) and a decomposition &f;,

CEK) + B+ = CM*(K) +
=CMK) < S, (73)
=S; + B + 67 + 87,
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and therefore
v < [S; — CP*(K) + 6] + 5. (74)

The right side of (74) is a uniformly integrable martingale[@si']. Hencey is a non-negative
local martingale dominated by a uniformly integrable martingale. Therefore0. Ol

This theorem is the generalization of Merton’s [48] famous no early exercise theorem (i.e.,
given the underlying stock pays no dividends, otherwise identical American and European call
options have identical prices). This extension is the first equality in expression (70), applied
to the options’market prices The second equality implies thAmerican call option prices
exhibit no bubbles, even if there is an asset price bubH®hever, By Theorem 6.4, an asset
price bubble does create a difference between an American and Europeafuoaidshental
prices, i.e.

Ci*(K) = CF*(K) = B

7 Forward and Futures Prices

This section studies both forward and futures prices trading in a static market. In the clas-
sical theory, differences between these two prices can only arise in a stochastic interest rate
economy. Consequently, we need to make explicit the money market accousrtainenm the
notation for the asset’s price process. In this regard, wé l@eénote thedollar price of the
risky asset, and’/D the price in units of the nuéraire. ThenQ € M,,.(S) implies that
S/ D is a@-local martingale. To simplify the presentation, we also assume that the risky asset
pays no dividends over the time interyal 7', wherer > T almost surely.

For some key results, we need to introduce trading in default free zero-coupon bonds. In
this regard, we lep(¢,T') be the timet market priceof a sure dollar paid at tim&. Since
zero coupon bonds have bounded payoffs, by Theorem 5.1, we know that zero-coupon bonds
have no bubbles, hence this market price also represents the fundamental price. However, this
distinction will not be used below.

7.1 Forward Prices

Forward contracts were defined in section 6. Recall that a forward contract on the risky asset
S with strike price K and maturityT” is defined by its tim& payoff [S7 — K]. The timet
forward pricefor this contract, denotef} r, is defined to be that strike prid€ that gives the

T - maturity forward contract zenmarketvalue at timet. Given these definitions, it is easy to
prove the following theorem.

Theorem 7.1.

ft,T . p(th) - St'

Proof. By the No Dominance (Assumption 2.2), any two trading strategies yielding the same
payoff have the same market price. Let Portfolio A be a unit of a long forward contract and
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f,7 units of a zero coupon bond maturity at tifieLet Portfolio 3 be a unit of the underlying
asset. Lenn4 andA” denote market prices of each portfolio. Then

0+ furp(t,T) = A = AP = 5, (75)
since both portfolios have the same pay®iff at maturity. O

This is an intuitive and well known result which follows directly from the no dominance
assumption 2.2.

Corollary 7.1. (Forward Price Bubbles)

(1) fir >0.
(2) fir-p(t,T)is aQ-local martingale for eact) € M,.(W).
() fir-p(t,T) = EQ[St|Fi] + B; where3; = S; — Sf.

Proof. The proof follows trivially because the risky asset’s price has these properties and
p(t,T)¢=0. O

Thus, we see that discounted forward prices inherit the properties of the risky asset'’s price
bubble. In fact, any bubble present in the discounted forward price for a risky asset must be
equal to the bubble in the risky asset’s market price.

7.2 Futures Prices

A futures contract is similar to a forward contract. It is a financial contract, written on the risky
assetS, with a fixed maturityT'. It represents the purchase of the risky asset at fimga

a prearranged payment procedure. The prearranged payment procedure is called marking-to-
market. Marking-to-market obligates the purchaser (long position) to accept a continuous cash
flow strean! equal to the continuous changes in the futures prices for this contract. The time

t futures pricesdenotedF; 7, are set (by market convention) such that newly issued futures
contracts (at time) on the same risky asset with the same maturity dateave zeranarket

value Hence, futures contracts (by construction) have zero market value at all times, and a
continuous cash flow stream equalkitb; 7. At maturity, the last futures price must equal the
asset’s pricé’r + = St (see Duffie [22] or Shreve [59] for further clarification).

With respect to futures contracts, in the existing finance literature, the characterization
of a futures price implicitly (and sometimes explicitly) uses the existence of a given local
martingale measur which makes the futures price a martingale (e.g., see Duffie [22], p.
173 or Shreve [59], p. 244). Since futures prices have bounded maturities, this excludes (by
fiat), the existence of futures price bubbles. Thus, to study bubbles in futures prices, we first
need to generalize the characterization of a futures price to remove this implicit (or explicit)
restriction.

Let us construct a portfolio long one futures contract. The wealth process of this portfolio,
denotedV;’, is then given by

b1 %, PFur
VF:/dF :< = — F >+ S du 76
t 0 Du u, T Dt 0,7 0 Du u ( )

For simplicity, we assume that futures contracts are marked-to-market continuously.
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where the second equality is due to an integration by parts.

If (V,")i>0 is not locally bounded from below, then buying a futures contract is not an
admissible trading strategy. In the context of our model, this implies that futures contracts
cannot trade. To avoid this contradiction, given that we already assume futures contracts trade,
we assume that,”" is locally bounded.

Let (T},)»>1 be a sequence of stopping times such (W%M)tzo is bounded from below
for eachn. Then, there exists@ € M,,.(W) such that/* is a local martingale by applying
the First Fundamental Theorem of asset pricing to the market with the @&xetg?);~o,
stopped aff},, eachn. Note that by stoppind/ * is locally aQ-local martingale, and hence a
Q@-local martingale.

Definition 7.1. Semimartingale§F; r)o<:<7 satisfying the following properties are called
NFLVR futures price processes

(1) V;F' is locally bounded from below.

(2) There exists & € M;,.(W) such that(V,A; )0 is a Q-local martingale where

(T)n>1 is @ sequence of stopping times such tﬁ@ﬁTn)tzo is bounded from below
for eachn.

(3) Frr = Sr.
Let " denotes the class of all NFLVR futures price processes. We also note that since
futures contracts are not replicable using an admissible trading strategy which uses only the
risky asset, then any NFLVR futures price process also satisfies the no dominance assumption.

Note that we do not require futures pridgs r):>o to be non-negative.
With this definition, the following theorem immediately follows.

Theorem 7.2.FixaQ € M,.(W).
DEfine(FAT)tZQ = (EQ [ST’ft])tZO- Then,(Ft/’T)tzo € of,

Proof. Sinces; is non-negativefy . = Eq[Sr|F:] > 0. By equation (76),

v = Fir _ Flo | + /t Fl["Tr du > —F (77)

t Dt 0,7 0 Du u = 0,7
and ;7" is admissible. F. . = Sr is trivial. Since(F} )+>o is @ martingale and/D is
continuousy *" is a local martingale. Ol

As expected, the classical definition of a futures price (Duffie [22], p. 173 or Shreve [59],
p. 244) gives an acceptable NFLVR futures price process. The classical futures price is a
uniformly integrable martingale, and hence exhibits no bubbles. However, this is not the only
possible NFLVR futures price process.

Theorem 7.3. (Futures Price Bubbles)
Let 3 be a local@ -martingale, locally bounded from beldty with 57 = 0.
Define(Ft,T)tZO by

Fyr = EQ[St|Ft] + Bt (78)
Then,(FuT)tZO S or,

2We note that3 is not restricted to being non-negative.
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Proof. Observe thatlg[Sr|F:| > 0 for eacht by the non-negativity obr. Sinceg, is locally
bounded from below,F; 1);>¢ is also locally bounded from below. Without loss of generality
(by stopping) we assume th@t; );>o is bounded from below by K for someK > 0. Then

K 1
Fs Fppe sy K(=—-1)>-Fr-K 7
Vi" > —For Dt+ D, > —Fyr (79)

ThereforeF; r € ®F. O

We see that futures price bubbles are consistent with futures contracts trading in a market
satisfying NFLVR and no dominance.

In the classical approach, futures prices are givetiby = Eq[St|F:], which is a uni-
formly integrable martingale und€?. SinceSr is non-negativeF; r is non-negative. How-
ever, in an economy which allows bubbles, as Theorem 7.2 shows, a bubble can be negative if
— B¢ > EQ[STLFt]

The reason for this possibility is that if the underlying asseind the spot rate exhibit
a large negative correlation und@r then the holder of a long futures contract has to borrow
money when the spot rate is high and invest when the spot rate is low. If futures prices are
expected (undef)) to dramatically decline, then in units of the néraire, this generates a
cash flow stream so negative (in expectation), that negative futures prices are necessary to
produce futures contracts with zero value.

8 Charges

This section shows the equivalence betweerldhal martingale approacliLoewenstein and
Willard [44], [45], Cox and Hobson [11], and Heston, Loewenstein and Willard [35]) and the
charges approacliGilles [30], Gilles and Leroy [31], Jarrow and Madan [41]) to bubbles.
This correspondence is obtained via a generalization of the arbitrage free price system used by
Harrison and Kreps [34] and Harrison and Pliska [32].

8.1 Price Operators

This section introduces the concept of a price operator. We start with the price fungtion

$ — R, introduced in the no dominance assumption 2.2 that gives for gack, its timet

price A(¢). Let @, C ® represent the set of traded assets. For our ecorigmy-= {1, S'}.
The no dominance assumption implies the following lemma.

Lemma 8.1. (Positivity and Linearity onb) Let ”>=;” denote dominance in the sense of As-
sumption 2.2 at time.

(1) Leted', ¢ € ®. If ¢ = ¢ for all ¢, thenA;(¢') > A(¢) for all ¢ almost surely.
(2) Leta,b € Ry and¢’, ¢ € ®. Then,aA(¢') + bAi(¢) = Ai(ag’ + bg) for all ¢ almost
surely.

Proof: Condition (1) is the definition of no dominance restated, and condition (2) follows
by assuming strict inequality (for each direction in turn), and obtaining a contradiction using
condition (1). O
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In particular, iff(t’y] dA, +Z=" = 0 almost surely for) = (A, =), thenA;(¢) = 0 almost
surely. Linearity excludes liquidity impacts as in Cetin, Jarrow and Protter [10], and it implies
thatA; is finitely additive on®.

By lemma 2.3, we know that the market prices of the traded assets satisfy NFLVR. Thus,
for each traded assetc ®,,, A(¢) is aQ® -local martingale on the st < t < 0,1} for
eachi. This implies by Theorem 4.2 that fgre ®,,,,

Ar(9) = A (9) +61(9)

whered; (¢) is a non-negativ€)‘-local martingale. Of coursé,(¢) is the traded asset’s price
bubble. To extend this property &f on the setb,, to all of &, we add the following assump-
tion.

Assumption 8.1. LetA; : & — R, be such that for eachh € ®, there exists @ such that

A(@) =1pay > (EQH { / dA, + =

i>0 t
= Eyix VdAu =r
(o | [ s

= Aj(¢) + 6t(o)

where Q% is a valuation measure§’(¢) is a non-negative’-local martingale such that
d,(¢) = 0 and

ft} + 52((15)) 1{t€[0'i,0'i+1)}

(80)

ft} + 5t(¢)> Lyt

0u(8) = 61O L tcioro0n))- (81)

i>0

We call anyA; satisfying this assumptionmaarket price operatoand denote the collection
(At)e>0 by A. We call(A, ) aprice system

The notion of a price system was proposed in the seminal papers of Harrison and Kreps
[34] and Harrison and Pliska [32]. In Harrison and Kreps [34], the price system is first defined
on a collection of securities ifi?, replicable by self-financing simple trading strategies and
then extended td.?(2, F, P). More importantly, the model has a finite time horizon and
every local martingale in their framework is a uniformly integrable martingale. One of the
their key conclusions (Theorem 2) is that the market admits no simple free lunches if and only
if the market price operator is given by an expectation with respect to an equivalent martingale
measure.

This theorem characterizes the existence of equivalent martingale measures, and it is now
known as the First Fundamental Theorem of asset pricing. As shown by Delbaen and Shacher-
mayer (e.g. [13], [14]), this is true in a much more general setting, properly interpreted. Since
every martingale on a finite time horizon is a uniformly integrable martingale and closable,
once an EMM is identified, the price of the asset before maturity is given as a conditional ex-
pectation, which leads to their characterization of the market price operator. In a more general
setting, when the market price process)a$ a strictQ)’ -local martingale or if the maturity
is unbounded and (¢) is a non-uniformly integrable martingale, market prices can differ from
the conditional expectation. The bubble comporémni in (80) represents this difference.
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8.2 Bubbles

In the literature, an alternative approach to explain bubbles is to introduce charges (see Jarrow
and Madan [41], Gilles [30] , Gilles and Leroy [31]). The following theorem shows that the
local martingale characterization of market prices has a finitely additive market price operator
if and only if bubbles exist.

Theorem 8.1. Fix t € R;. The market price operatak; is countably additive if and only if
bubbles do not exist.

Proof. Fix ¢ € ® where¢p = (A,Z%). If v < ¢, thenS; = S} = 0. Therefore it suffices to
consider the case when< v. Define a sequence of stopping times),>o by 7o = ¢ and

SAV
Tn:inf{s>t:/ dAu+E”>n}/\1/, n>1 (82)
t

and definey” € ® by ¢° = (0,0) and
" = (AT B yery) — (AT E s, 1)) Vn > 1 (83)

whereA™ ™ is a process such that»~ = A, r, — AA; 1,y . Then for eachn, ¢" is
bounded by» and

6= ¢n. (84)
n=0

Sinceg,, is bounded,

At(¢n) = AI(Cbn)

— (85)
= EQt* [Afn, — ATn—l— + = 11/6[7'7171,7'7,,) ]:t] 1{t<1/}
Assume that\; is countably additive. Then
Ai(@) = M) = M (D dn) = D Aal(n)
— ZEQt* [Afrn_ — A7n717 + Eylue[m_l,m)‘ ft] 1{t<,j}
" (86)

= EQt* [Z {ATn— - A7'n—1— + Eu]‘VG[Tnfl»Tn)} ‘Ft]l{t<u}

= Egi- [/ dA, +E"!ft] 1oy
t

sinceA,_ = A,. This implies that bubbles do not exist in the market priceé.oince this
is true for allp € ®, bubbles do not exist. Conversely if bubble do not exist then the market
price operator is given by a conditional expectation and countable additivity holds. [J

This theorem shows that the characterization of bubbles as charges is an alternative per-
spective of our model based on the characterization of local martingales, but in essence is not
different.
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9 Conclusion

This section concludes the paper with a brief discussion of the existing empirical literature
testing for bubbles, followed by some suggestions for future research. As mentioned in the
introduction, there is a vast empirical literature with respect to bubbles, studying different
markets over different time periods, including:

(1) the Dutch tulipmania 1634-37 (see Garber [28], [29]),

(2) the Mississippi bubble 1719-20 (Garber [29]),

(3) the South Sea bubble of 1720 (Garber [29], Temin and Voth [61]),

(4) foreign currency exchange rates (Evans [24], Meese [47]),

(5) with respect to German hyperinflation in the early 1920s (Flood and Garber [26]),

(6) U.S. stock prices over the 20th century (West [65],[66], Diba and Grossman [20], Dezh-
bakhsh and Demirguc-Kunt [18], Froot and Obstfeld [27], McQueen and Thorley [46],
Koustas and Serletis [42]),

(7) the 1929 US stock price crash (White [67], DeLong and Shleifer [17], Rappoport and
White [54], Donaldson and Kamstra [21]),

(8) land and stock prices in Japan 1980 - 1992 (Stone and Ziemba [60]),
(9) US housing prices 2000 - 2003 (Case and Shiller [8]), and finally

(10) the NASDAQ 1998-2000 internet stock price peak (Ofek and Richardson [50], Brun-
nermeier and Nagel [6], and, Cunado, Gil-Alana and Perez de Gracia [12], Pastor and
Veronesi [51], and Battalio and Schultz [5]).

The majority of these empirical studies are based on models in discrete time with infinite
horizons where there exists a martingale measlyrand the traded assets have no terminal
payoffs atr = oo. By our Theorem 4.2, this last observation excludes type 1 bubbles. In
discrete time models, when the current stock price is known, there are no local martingales.
Hence, by construction these models exclude type 3 bubbles as well. Hence, the models in
the existing literature have really only investigated the existence of type 2 bubbles @e. Is
a uniformly integrable martingale measure or not?). As one might expect from such a vast
literature, the evidence is inconclusive.

This empirical indeterminacy is due to the fact that to test

B = S - Bq [/ ap, ft} 40,

t
one must assume a particular model fgp [ftoo dDu| ]—'t]. As such, these empirical tests
involve ajoint hypothesis the assumed model and the null hypothesis# 0. Different
studies use different models with different conclusions obtained.

To our knowledge (as just mentioned) there appears to be no empirical study testing for
type 3 bubbles. This is an open empirical question. Theorems 6.3 and 6.4 provide a plausible
procedure for implementing such a test, assuming the market is incomplete, of course. Using
the insights from Jacod and Protter [37], if enough European put options trade, then we can
infer the market selected ELMN) from the put option market prices. Next, givéh we can
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compute the fundamental prices of the traded European call options, and compare them to the
calls’ market prices. If they differ, a type 3 bubble exists. And, the magnitude of the bubble
must match the magnitude of the type 3 bubble in the asset’s market price - providing the test
for a type 3 asset price bubble.

This proposed testing procedure, however, does not test for either type 1 or type 2 asset
price bubbles. To do this, it seems as if there is no choice other than to assume a particular
model for the stock’s fundamental price. We look forward to the continued empirical search
for bubbles, and we hope that some of the theorems we've generated herein will be useful in
that regard.
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10 Appendix:

This appendix proves some lemmas and theorems used in the American option pricing section
of the text.

Lemma 10.1. Let M, be a non-negativeddlag local martingale. Assume that there exists
some functiory and a uniformly integrable martingal& such that

AM, < f(sup My)(1+X,), (87)

t<r<u
whereAM,, = M, — M,,—. Then forS,, = inf{u > ¢ : M, > x,,,},

lim Eg [Msm1{gm€(t,T)}] = M; — Eq[Mr|F] (88)

m—00

Proof. To simplify the notation, we omit the Q subscript on the expectations operatdrf,,Let
be a fundamental sequenceldf. ThenM;'" = E[MZ"|F;] and hence

M = M"15, i + E[MST,; Lis, ey Fl + E[Mi s, —my|Fi] (89)

By hypothesis\{" < @, + f(2m)(1 + AXg,,) and M < a, + f(2m)(1+ X7). By the
bounded convergence theorem,

M, = nh_{go M = Milyg, - + E[Ms,, s, ety |Fi] + E[Mr1yg,,—m|Fi] (90)
Since X is a uniformly integrable martingale, it is in class D aif " } -.stopping timesiS UNi-
formly integrable. Fixn. ThenM;F", MST; are bounded by a sequence of uniformly integrable

martingales. Therefore taking the limit with respectitand interchanging the limit with the
expectation yields:

M; = n}gnoo E[MSml{Sme(t,T)}’-E] + E[M7|F). (91)
O]

Theorem 10.1.Let M be a non negative local martingale with respecfft@uch that/A M
satisfies a condition specified in Lemital. LetG(z,t) : Ry x [0,7] — Ry be a function
such that

o G(z,s) <G(z,t)forall 0 < s<t<T

e Forallt €[0,7], G(x,t) is convex with respect to x.

o lim, .. ¢ — cforall t € [0, 7],

T

then

s EQ|G(M:,7)|Fi] = EQ|G(Mr, T)|Fi] + (¢ ANO)(My — Eq[Mr|F])  (92)
TE|L,
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Proof. To simplify the notation, we omit the Q subscript on the expectations operator. Suppose
¢ < 0. Then by monotonicity with respect toand Jensen'’s inequality applied to a convex
functionG and a non-negative local martingdlé&,

sup E[G(M.,7)|F] < sup E[G(M,,T)|F]

T€t,T) T€t,T)
SE[G(MT, T)|.7-'t] (93)
< sup E[G(M.,7)|F]
T€L,T)
and
Telt,T

Suppose: > 0. Fixe > 0. Then there exist§ > 0 such that > 0 3¢ > 0 such thatvz > &,

G0 » ¢ — ¢ and hencé ™™ > ¢ — cforallu € [0,T). Let {z,},>1 be a sequence in

(&, 00) such that,, T co. Let
Sp =inf{u >t: My >z, } AT. (95)
Without loss of generality we can assume that< x,,. SinceG(-,t) is increasing irt,

m{lp ] E[G(M;,7)|F] > E[G(Ms, , Sn)|Fi]

TEL,T
— E[G(Mr,T)1s,—1y|F) + E[G(Ms, , Su)1¢s, <1y | 7] (96)
> ElG(Mr, T)1g, =1y Fi] + E[G(Ms,,0)1s, <1y | Fi]

SinceMg, > z, > &, G(Mg,,0) > (c —€) Mg, . Next, let’s take take a limit o — co. By
Lemma 10.1 applied withS,, } and the monotone convergence theorem,

lim sup E[G(M.,1)|F]

N0 relt, T

> lim {E[G(Mr, T)ls,—1}|Fi] + (c — €) E[Ms, 1(s, <y | 7] } (67)
>E[(G(Mr,T)|Fi] + (¢ — &) (My — E[Mrp|F)).
Lettinge — 0,

81[1%] E[G(M.,7)|F] > E[G(Mp,T)|F] + cf4 (98)
TE(L,

To show the other direction, 1€t°(z, u) = cx — G(x,u). G°(x, -) is a non-positive increasing
concave function w.rt such that

lim G 2) (~2)

T—00 T

=0 (99)
By Jensen’s inequality,

E[G‘(Mr,u)|F,] < GY(E[Mr|Fu],u) < GY(My,u) (100)
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Therefore

G(My,u) <c(M, — E|G(Mr,u)|Fu.))
=cB, + E[G(Mr,u)|F,) (101)

Since thisis true for all € [¢t,T], G(M;,7) < ¢ + E[G(Mr,T)|F;] forall 7 € [t,T]. By
the tower property of martingales, and a supermartingale property,

E[G(M.,7)|F] < E[cf; + E[G(Mrp,T)|F:|Ft) < E[G(Mp,T)|F] + ¢f.  (102)
Therefore

51[1p ] E[G(M,,7)|F] = E[G(Mp,T)|F] + B (103)
Tet,T

O

This theorem is an extension of Theorem B.2 in Cox and Hobson in two important ways.
First, we relax the assumption that a martingalebe continuous. Second, the payoff function
G(-,x) allows a more general form and, in particular, it allows an analysis of an American
option in an economy with a non-zero interest rate.
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